|
Фоторезисторы ФР1-3 150кОм 47кОм 68кОм 100кОм 220кОм 330кОм) ,фоторезистор фск-г1 и фоторезистор фск-1 документация технические характеристикив продаже сейчас (фоторезистор ФР1-3 150кОм 47кОм 68кОм 100кОм 220кОм 330кОм) ,фоторезистор фск-г1 и фоторезистор фск-1Полупроводниковые фотоэлементы - фоторезисторы обладают свойством менять свое активное сопротивление под действием падающего на них света. Фоторезисторы имеют высокую чувствительность к излучению в самом широком диапазоне - от инфракрасной до рентгеновской области спектра, причем сопротивление их может меняться на несколько порядков. Фоторезисторам присущи высокая стабильность во времени, они имеют небольшие габариты и выпускаются на различные номиналы сопротивлений. Наибольшее распространение получили фоторезпсторы, изготовленные из сернистого свинца, сернистого кадмия, селенистого кадмия. Название типа фоторезисторов слагается из букв и цифр, причем в старых обозначениях буквы А, К, Д обозначали тип использованного светочувствительного материала, в новом же обозначении эти буквы заменены цифрами. Буква, стоящая за дефисом, при старом обозначении, характеризовала конструктивное исполнение (Г-герметизированные, П-пленочные). В новой маркировке эти буквы также заменены цифрами. В табл. 1 приведены наименования наиболее распространенных обозначений фоторезисторов. Технические характеристики фоторезисторов ФР-764, ФР-765, ФР1-3, СФ2-5А Технические характеристики фоторезистора ФСК-Г1 Таблица 1. ТИПОВЫЕ ОБОЗНАЧЕНИЯ ФОТОРЕЗИСТОРОВ
Светочувствительный элемент в некоторых типах фоторезисторов выполнен в виде круглой или прямоугольной таблетки, спрессованной из порошкообразного сульфида или селенида кадмия, в других он представляет собой тонкий слой полупроводника, нанесенного на стеклянное основание. В том и другом случае с полупроводниковым материалом соединены два металлических вывода. Схематично устройство фоторезистора и его включение показано на рис1..
Рис.1 Малогабаритные пленочные фоторезисторы выпускаются в пластмассовых и металлических корпусах с влагозащитным покрытием светочувствительного элемента прозрачными эпоксидными смолами. Внешний вид и размеры наиболее распространенных типов фоторезисторов показаны на рис.2.
Таблица 2. ПАРАМЕТРЫ ФОТОРЕЗИСТОРОВ
В таблице приведены средние значения, определенные (кроме Iт) при освещенности 200 лк. У некоторых типов фоторезпсторов темновое сопротивление может иметь значительный разброс; - кратностью изменения сопротивления Rт/Rсв, параметром, показывающим отношение темнового сопротивления к сопротивлению при освещенном состоянии. Это один из важнейших параметров, характеризующий чувствительность фоторезистора. С увеличением освещенности кратность возрастает по линейному закону, с уменьшением - снижается. Наименьшей чувствительностью обладают сернисто-свинцовые фоторезисторы, у которых кратность при освещенности 200 лк не ниже 1,2. У остальных типов фоторезисторов чувствительность значительно выше; - рабочим напряжением, под которым понимается напряжение, гарантирующее продолжительную работу фоторезистора. При работе в импульсном режиме у сернисто-кадмиевых и селенисто-кадмиевых фоторезисторов допустимое напряжение может в 2-3 раза превышать рабочее. У сернисто-свинцовых фоторезисторов рабочее напряжение можно принять равным 0,1 Rт, где Rт в килоомах; - допустимой мощностью рассеяния, позволяющей длительную эксплуатацию фоторезистора при +20° С в окружающей среде без опасности появления необратимых изменений в светочувствительном слое; - спектральными характеристиками, показывающими, в какой части спектра фоторезистор имеет наибольшую чувствительность. Примерные спектральные характеристики показаны рис.3. Рис.3
где: DI - фототок, мка; L - освещенность, лк; S - размер светочувствительной площадки, см2; U - напряжение, приложенное к фоторезистору, B. Если величину чувствительности умножить на рабочее напряжение, то получится интегральная чувствительность. Кроме этого, свойства фоторезпсторов характеризуются вольт-амперными характеристиками, которые показывают зависимость тока через фоторезистор от приложенного к нему напряжения (см. рис. 4, а). Эта характеристика линейна в довольно широких пределах. Для некоторых типов фоторезпсторов при напряжениях меньше рабочего наблюдается нелинейность (рис. 4, б).
Рис.4 Фоторезисторы обладают инерционностью, судить о которой можно по частотной характеристике, приведенной на рис. 5. Эта характеристика выражает зависимость между величиной фототока и частотой модуляции светового потока, падающего на фоторезистор. Как видно из характеристики, величина сигнала, снимаемого с фоторезистора, уменьшается с увеличением частоты модуляции светового потока.
Рис. 5 Чувствительность фоторезисторов меняется (уменьшается) в первые 50 часов работы, оставаясь в дальнейшем практически постоянной в течение всего срока службы, измеряемого несколькими тысячами часов. Интервал рабочих температур для сернисто-кадмиевых фоторезисторов составляет от -60 до +85°С для селенисто-кадмиевых - от -60 до +40°С и для сернисто-свинцовых - от -60 до +70°С. Основной областью применения фоторезисторов является автоматика, где они в некоторых случаях с успехом заменяют вакуумные и газонаполненные фотоэлементы. Обладая повышенной допустимой мощностью рассеивания по сравнению с некоторыми типами фотоэлементов, фоторезисторы позволяют создавать простые и надежные фотореле без усилителей тока. Такие фотореле незаменимы в устройствах для телеуправления, контроля и регулирования, в автоматах для разбраковки, при сортировке и счете готовой продукции, для контроля качества и готовности самых различных деталей. Широко используются фоторезисторы в полиграфической промышленности при обнаружении обрывов бумажной ленты, контроле за количеством листов, подаваемых в печатную машину. В измерительной технике фоторезисторы применяются для измерения высоких температур, для регулировки температуры в различных технологических процессах. Контроль уровня жидкости и сыпучих тел, защита персонала от входа в опасные зоны, контроль за запыленностью и задымленностью самых различных объектов, автоматические выключатели уличного освещения и турникеты в метрополитене - вот далеко не полный перечень областей применения фоторезисторов. Фоторезисторы нашли применение в медицине, сельском хозяйстве и других областях. В настоящее время трудно найти такую отрасль народного хозяйства, где бы они не использовались в целях повышения производительности труда, улучшения качества продукции и облегчения труда человека. |