Panasonic ideas for life

Предлагаем ЭЛЕКТРОННЫЕ КОМПОНЕНТЫ
(радиодетали) СО СКЛАДА И ПОД ЗАКАЗ реле Panasonic NAIS продажа в Минске Беларусь тел. 8(017)200-56-46 www.fotorele.net e:mail minsk17@tut.by
Техническая информация реле Panasonic NAIS datasheet pdf техническая документация описание фото рис. маркировка габариты размер параметры применение

GENERAL CATALOG MICROWAVE DEVICES

Product lineup

Coaxial connector contact terminal
COAXIAL SWITCHES

RD Coaxial Switch (SPDT, Transfer, SP6T)

- Frequency 13 GHz (SP6T) ($\sim 26.5 \mathrm{GHz}$, SPDT/Transfer)
- High capacity load (120W)

RV Coaxial Switch (SPDT)

- Frequency $\sim 26.5 \mathrm{GHz}$
- Small size

Types - Applications

Contents

Selector Chart6
High Frequency Relays 12
RA RELAYS (ARA) 12
RJ RELAYS (ARJ) 17
RS RELAYS (ARS) 22
RE RELAYS (ARE) 33
RN RELAYS (ARN) 37
RV COAXIAL SWITCHES (ARV) 44
RD COAXIAL SWITCHES (ARD) 50
Excerpts from Technical Information 64
Reliability 64
Relay Soldering and Cleaning Guidelines 66
SMT Soldering Guidelines 68

Support for wide range of frequencies

[^0]
Expanding design possibilities with miniature microwave relays

Presenting the new RS relay with excellent high-frequency characteristics for communications and measurement applications.

A new 50Ω type (up to 3 GHz) is now available for applications demanding high quality such as mobile phone base stations, wireless devices, and measurement equipment. While maintaining excellent high-frequency characteristics this model is 60% smaller than its predecessor*. A 75Ω type is also available for broadcasting equipment.
*Compared to RK relay.

Rich lineup of coaxial switches with excellent HF characteristics

High quality to bolster device reliability. The RD coaxial switch is available in SPDT, Transfer and SP6T types.

These coaxial switches are ideal for applications that require high quality and reliability such as base stations, wireless devices, and measurement instruments. With excellent high-frequency characteristics extending into the highfrequency band, these switches achieve a long working life of 5 million switchings.
A rich lineup is offered that includes a with-termination-type (SP6T) and a coil drive (+COM type) type to suit many different applications.

SPDT

Transfer

$\begin{gathered} \text { Type } \\ \text { Tyopular Type } \end{gathered}$ (Picture scale: DIN A4)	Features	Switching current	Max. switching voltage	Contact arrangement	Coil voltage
	- Ultra small coaxial switch - Up to 26.5 GHz - Impedance 50Ω - PIN and SMA terminals available - Latching types available - 2 -coil latching type helps reduce power consumption - Failsafe type available - Reverse type available - Surge withstand voltage: 500 V rms HF Characteristics at 18 GHz / SMA type: - Isolation min. 40dB - Insertion loss max. 0.7dB - V.S.W.R. max. 1.7	HF: 50W (3GHz)	-	SPDT	(DC) 4.5, 12, 24V
	- Coaxial relay - Up to 26.5 GHz (18 GHz) - Impedance 50Ω - Latching types available - TTL Version available HF Characteristics at 18 GHz : - Isolation min. 60dB - Insertion loss max. 0.5dB - V.S.W.R. max. 1.5	DC: 100 mA (indicator) HF: 120W (3GHz)	-30V DC (indicator)	SPDT	(DC) 4.5, 5, 12, 24V
	- Coaxial relay - Up to $26.5 \mathrm{GHz}(18 \mathrm{GHz})$ - Impedance 50Ω - Latching types available - TTL Version available HF Characteristics at 18 GHz : - Isolation min. 60dB - Insertion loss max. 0.5dB - V.S.W.R. max. 1.5	DC: 100 mA (indicator) HF: 120W (3GHz)	- 30V DC (indicator)	DPDT	(DC) 4.5, 5, 12, 24V
	- Coaxial relay - Up to $13 \mathrm{GHz}(18 \mathrm{GHz})$ - Terminated type available - Impedance 50Ω - Latching types available HF Characteristics at 13 GHz : - Isolation min. 65 dB - Insertion loss max. 0.4dB - V.S.W.R. max. 1.5	DC: 100 mA (indicator) HF: 120 W (3GHz)	- 30V DC (indicator)	SP6T	(DC) 4.5, 5, 12, 24V

Coil power	Breakdown voltage				Life (min. operations)		Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets	C $\begin{array}{c}\text { contacts to } \\ \text { coil }\end{array}$	Between live parts and ground	Electrical	Mechanical		
700mw	500Vrms	500 Vrms	500Vrms	500 V rms	3×10^{5}	10^{6}		$\stackrel{44}{-}$
Single side stable: 840-970mW (4.5, 12, 24V) 2 coil latching: $700-900 \mathrm{~mW}$ (4.5, 12, 24V) Latching with TTL driver (self cut-off function): $5,12,24 \mathrm{~V}$	500Vrms	500 Vrms	500Vrms	500 Vrms	5×10^{6}	5×10^{6}	Coax	50
Single side stable: 1540-1670mW (4.5, 12, 24V) 2 coil latching: 1200-1400mW (4.5, 12, 24V) Latching with TTL driver (self cut-off function): $5,12,24 \mathrm{~V}$	500Vrms	500 Vrms	500Vrms	500 Vrms	5×10^{6}	5×10^{6}	Coax	50
Single side stable: 840mW (4.5, 12V) 970mW (24V) Latching: 700mW (SET 4.5V) 750mW (SET 12V) 900 mW (SET 24V)	500Vrms	500 Vrms	500Vrms	500 Vrms	5×10^{6}	5×10^{6}	Coax	50

Type » = Popular Type (Picture scale: DIN A4)	Features	Switching current	Max. switching voltage	$\begin{gathered} \text { Contact } \\ \text { arrangement } \end{gathered}$	Coil voltage
 $14 \times 9 \times 8.2 \mathrm{~mm}$	- Shielded HF relay - Up to 8 GHz - Impedance 50Ω - Latching types available - SMD and PCB version available HF Characteristics at 5 GHz : - Isolation min. 35dB - Isolation min. 30dB between contact sets - Insertion loss max. 0.5dB - V.S.W.R. max.1.25	DC: 0.3 A HF: 1W (5 GHz)	- 30V DC	2 c	(DC) $3,4.5,12,24 \mathrm{~V}$
	- High hot switching capability up to 80 W at 2 GHz , contact rating up to 150 W at 2 GHz - High frequency capability up to 6 GHz - 1 changeover contact, impedance 50Ω - Reversed contact type available - Single side stable or 2 coil latching types available - SMT version available - Very good HF characteristics HF Characteristics at 2GHz: - Isolation min. 55dB - Insertion loss max. 0.12dB - V.S.W.R. max. 1.15	DC: 0.5 A HF: 80W	- 30V DC	$\begin{gathered} 1 \mathrm{c} \\ \text { SPDT } \end{gathered}$	(DC) 4.5, 12, 24V
 $14.7 \times 9.7 \times 5.9 \mathrm{~mm}$	- HF relay in SMT version - Up to 1 GHz - Impedance 50Ω - Latching types available HF Characteristics at 1 GHz : - Isolation min. 20dB - Isolation min. 30dB between contact sets - Insertion loss max. 0.3dB - V.S.W.R. max. 1.2	DC: 1A HF: 3 W (1 GHz , carrying point to carying current)	-30V DC	2 c	$\begin{aligned} & \text { (DC) } 1.5,3,4.5,5, \\ & 6,9,12,24, \\ & 48 \mathrm{~V} \end{aligned}$

Coil power	Breakdown voltage				Life (min. operations)		Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets	Contacts to coil	Between live parts and ground	Electrical	Mechanical		
Single side stable: 200mW 2 coil latching: 150mW	500 Vrms	500 Vrms	500 Vrms	500Vrms	10^{6}	10^{7}		${ }_{-}^{17}$
Single side stable: 320 mW 2 coil latching: 400 mW	500 Vrms	-	500Vrms	500Vrms	10^{5}	10^{6}		37
Single side stable: 140mW (1.5-12V) 200mW (24V) 300 mW (48V) 1 coil latching: 70mW (1.5-12V) 100mW (24V) 2 coil latching: 140mW (1.5-12V) 200mW (24V)	750Vrms	1000Vrms	1000Vrms	1000Vrms	10^{7}	10^{8}		12

$\begin{gathered} \text { Type } \\ \star=\text { Popular Type } \end{gathered}$ (Picture scale: DIN A4)	Features	Switching current	Max. switching voltage	Contact arrangement	Coil voltage
	- HF relay - Up to 3 GHz - Impedance 50/75 Ω - Silent type available - Latching types available - SMT and PCB version available - 10 W at 3 GHz contact carrying power HF Characteristics at 3 GHz (50Ω PCB type): - Isolation min. 35 dB - Insertion loss max. 0.35 dB - V.S.W.R. max. 1.4	DC: 0.5A HF: 1W (3GHz)	- 30V DC	1 c	$\begin{aligned} & \text { (DC) } 3,4.5,9,12, \\ & 24 \mathrm{~V} \end{aligned}$
	- HF relay - Up to 2.6 GHz - Impedance 50/75 - SMT and PCB version available HF Characteristics at 2.6 GHz (75Ω PCB type): - Isolation min. 30dB - Insertion loss max. 0.5dB - V.S.W.R. max. 1.5	DC: 0.5 A HF: 1W (2.6GHz)	- 30V DC	1 c	$\begin{aligned} & \text { (DC) } 3,4.5,6,9,12, \\ & 24 \mathrm{~V} \end{aligned}$

Coil power	Breakdown voltage				Life (min. operations)		Mounting method (bottom view)	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Between open contacts	Between contact sets contact sets	$\begin{gathered} \text { Contacts to to } \\ \text { coil } \end{gathered}$ coil	Between live parts and ground and groun	Electrical	Mechanical		
Single side stable: 200mW 1 coil latching: 200mW 2 coil latching: 400 mW	500Vrms	-	1000Vrms	500 Vrms	3×10^{5}	5×10^{6}		22
Single side stable: 200 mW	500Vrms	-	1000Vrms	500 V rms	3×10^{5}	10^{6}		33

Panasonic ideas for life

1.0 GHz 2 Form C relay

FEATURES

1. High frequency characteristics (Impedance $50 \Omega, \sim 1.0 \mathrm{GHz}$)

- Insertion loss; Max. 0.3dB
- Isolation; Min. 20dB
(Between open contacts) Min. 30dB
(Between contact sets)
- V.S.W.R.; Max. 1.2

2. Surface mount terminal

This relay is a surface-mounted model with excellent high-frequency properties. In addition, it can use a microstrip line in the base circuit design which spares the labor of machining the base.

3. Low profile small type

$9.7(\mathrm{~W}) \times 14.7(\mathrm{~L}) \times 5.9(\mathrm{H}) \mathrm{mm}$
$.382(\mathrm{~W}) \times .579(\mathrm{~L}) \times .232(\mathrm{H})$ inch

4. High sensitivity: $\mathbf{1 4 0} \mathbf{~ m W}$ nominal operating power

5. High contact reliability

Electrical life: Min. 10^{7} (10mA 10V DC)

TYPICAL APPLICATIONS

- Measurement instruments

Oscilloscope attenuator circuit

SPECIFICATIONS

Contact

Arrangement			2 Form C
Contact material		Stationary	AgPd + Au clad
		Movable	AgPd
Initial contact resistance (By voltage 6V DC 1A)			Max. $75 \mathrm{~m} 3 / 4$
Rating	Contact rating (resistive)		10 mA 10 V DC 1A 30 V DC
	Contact carrying power		Max. 3W (at 1.0 GHz , impedance 503/4, V.S.W.R. max.1.2)
	Max. switching voltage		30 V DC
	Max. switching current		1A
High frequency characteristics ($\sim 1 \mathrm{GHz}$, Impedance 503/4) (Initial)	Isolation	Between open contacts	Min. 20dB
		Between contact sets	Min. 30dB
	Insertion loss		Max. 0.3dB
	V.S.W.R.		Max. 1.2
	Input power		$\begin{aligned} & \hline \text { Max. 3W (at } 1.0 \mathrm{GHz}, \\ & \text { impedance } 503 / 4, \\ & \text { V.S.W.R. max.1.2) } \end{aligned}$
Nominal operating power	Single side stable		$\begin{gathered} 140 \mathrm{~mW}(1.5 \text { to } 12 \mathrm{~V}) \\ 200 \mathrm{~mW}(24 \mathrm{~V}) \\ 300 \mathrm{~mW}(48 \mathrm{~V}) \\ \hline \end{gathered}$
	1 coil latching		$\begin{gathered} 70 \mathrm{~mW}(1.5 \text { to } 12 \mathrm{~V}) \\ 100 \mathrm{~mW}(24 \mathrm{~V}) \\ \hline \end{gathered}$
	2 coil latching		$\begin{gathered} 140 \mathrm{~mW}(1.5 \text { to } 12 \mathrm{~V}) \\ 200 \mathrm{~mW}(24 \mathrm{~V}) \end{gathered}$
Expected life (min. operation)	Mechanical (at 180 cpm)		10^{8}
	Electrical (at 20 cpm)	10mA 10 V DC (resistive load)	10^{7}
		1A 30 V DC (resistive load)	10^{5}

Characteristics

Initial insulation resistance *1		Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage *2	Between open contacts	750 Vrms for 1 min.
	Between contact sets	$1,000 \mathrm{Vrms}$ for 1 min.
	Between contact and coil Between contact and earth terminal	$1,000 \mathrm{Vrms}$ for 1 min.
Operate time [Set time] *3 (at 20		

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
${ }^{* 3}$ Nominal operating voltage applied to the coil, excluding contact bounce time.
*4 By resistive method, nominal voltage applied to the coil: 3W contact carrying
power: at 1.0 GHz , Impedance 50Ω, V.S.W.R. Max.1.2
${ }^{*}$ Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$.
${ }^{* 6}$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to 6 . Conditions for operation, transport and storage conditions in NOTES (Page 16).

ORDERING INFORMATION

Note: Packing style; Nil: Tube packing 40 pcs. in an inner package, 1,000 pcs. in an outer package
Z: Tape and reel packing 500 pcs . in an inner package, 1,000 pcs. in an outer package

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

- Single side stable type

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.)(initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, mA $(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
ARA200A1H(Z)	1.5	1.125	0.15	16	93.8	140	2.25
ARA200A03(Z)	3	2.25	0.3	64.3	46.7	140	4.5
ARA200A4H(Z)	4.5	3.375	0.45	145	31	140	6.75
ARA200A05(Z)	5	3.75	0.5	178	28.1	140	7.5
ARA200A06(Z)	6	4.5	0.6	257	23.3	140	9
ARA200A09(Z)	9	6.75	0.9	579	15.5	140	13.5
ARA200A12(Z)	12	9	1.2	1,028	11.7	140	18
ARA200A24(Z)	24	18	2.4	2,880	8.3	200	36
ARA200A48(Z)	48	36	4.8	7,680	6.3	300	57.6

- 1 coil latching type

Part No.	Nominal voltage, V DC	Set voltage, V DC (max.) (initial)	Reset voltage, V DC (max.) (initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, mA $(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
ARA210A1H(Z)	1.5	1.125	1.125	32	46.9	70	2.25
ARA210A03(Z)	3	2.25	2.25	128.6	23.3	70	4.5
ARA210A4H(Z)	4.5	3.375	3.375	289.3	15.6	70	6.75
ARA210A05(Z)	5	3.75	3.75	357	14	70	7.5
ARA210A06(Z)	6	4.5	4.5	514	11.7	70	9
ARA210A09(Z)	9	6.75	6.75	1,157	7.8	70	13.5
ARA210A12(Z)	12	9	9	2,057	5.8	70	18
ARA210A24(Z)	24	18	18	5,760	4.2	100	36

- 2 coil latching type

Part No.	Nominal voltage, V DC	Set voltage, V DC (max.) (initial)	Reset voltage, V DC (max.) (initial)	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating current, mA $(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
ARA220A1H(Z)	1.5	1.125	1.125	16	93.8	140	2.25
ARA220A03(Z)	3	2.25	2.25	64.3	46.7	140	4.5
ARA220A4H(Z)	4.5	3.375	3.375	145	31	140	6.75
ARA220A05(Z)	5	3.75	3.75	178	28.1	140	7.5
ARA220A06(Z)	6	4.5	4.5	257	23.3	140	9
ARA220A09(Z)	9	6.75	6.75	579	15.5	140	13.5
ARA220A12(Z)	12	9	9	1,028	11.7	140	18
ARA220A24(Z)	24	18	18	2,880	8.3	200	36

Tolerance: $\pm 0.1 \pm .004$

REFERENCE DATA

1-(1). High frequency characteristics (Impedance 50 ${ }^{\text {) }}$
Sample: ARA200A12
Measuring method: Measured with HP network analyzer (HP8753C).

- Isolation

1-(2). High frequency characteristics (Impedance 75Ω
Sample: ARA200A12
Measuring method: Measured with HP network analyzer (HP8753C).

- Insertion loss

- Isolation

RA (ARA)

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 10 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since RA relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick.
It is recommended that alcoholic solvents be used.

5. Soldering

Manual soldering shall be performed under following condition.
Tip temperature: $280^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C} 536^{\circ} \mathrm{F}$ to $572^{\circ} \mathrm{F}$.
Wattage: 30 to 60W
Soldering time: within 5 s
In case of automatic soldering, the following conditions should be observed

1) Position of measuring temperature Surface of PC board where relay is mounted.

2) IR (infrared reflow) soldering method

$\begin{array}{ll}T_{1}=150 \text { to } 180 \mathrm{C} 302 \text { to } 356 \mathrm{~F} & \mathrm{t}_{1}=60 \text { to } 120 \mathrm{sec} \\ \mathrm{T}_{2}=230 \mathrm{C} 446 \mathrm{~F} \text { and higher } & \mathrm{t}_{2}=\text { Within } 30 \mathrm{sec}\end{array}$
$\mathrm{T}_{3}=$ Within 250C 482 F
Temperature rise of relay itself may vary according to the mounting level or the heating method of reflow equipment. Therefore, please set the temperature of soldering portion of relay terminal and the top surface of the relay case not to exceed the above mentioned soldering condition.
It is recommended to check the temperature rise of each portion under actual mounting condition before use. The soldering earth shall be performed by manual soldering.
6. Conditions for operation, transport and storage conditions
1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.

3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

For complete "Cautions for Use", please download the "Relay Technical Information" from our Web site. For instructions on soldering, see page 66. For information on reliability, see page 64.

FEATURES

- Excellent high frequency characteristics (50Ω, at 5 GHz)
V.S.W.R.: Max. 1.25

Insertion loss: Max. 0.5 dB
Isolation: Min. 35dB
(Between open contacts)
Min. 30dB
(Between contact sets)

- Surface mount terminal

Surface mount terminals are now standard so there is much less work in designing PC boards.

- Small size

Size: $14.00(\mathrm{~L}) \times 9.00(\mathrm{~W}) \times 8.20(\mathrm{H}) \mathrm{mm}$
$.551(\mathrm{~L}) \times .354(\mathrm{~W}) \times .323(\mathrm{H})$ inch

TYPICAL APPLICATIONS

Measuring equipment market
Attenuator circuits, spectrum analyzer, oscilloscope
Mobile telecommunication market IMT2000, microwave communication Medical instrument market

SPECIFICATIONS

Arrangement			2 Form C
Contact material			Gold plating
Initial contact resistance (By voltage drop 10V DC 10mA)			Max. 150m Ω
Rating	Contact rating		1 W (at 5 GHz , Impedance 50Ω, V.S.W.R. \&1.25) 10mA 10V DC (resistive load)
	Contact carrying power		1W (at 5 GHz , Impedance 50 Ω, V.S.W.R. \&1.25)
	Max. switching voltage		30 V DC
	Max. switching current		0.3 A DC
High frequency characteristics (Initial) ($\sim 5 \mathrm{GHz}$, Impedance 50Ω)	V.S.W.R.		Max. 1.25
	Insertion loss (without D.U.T. board's loss)		Max. 0.5dB
	Isolation	Between open contacts	Min. 35dB
		Between contact sets	Min. 30dB
	Input power		$\begin{gathered} \text { 1W (at 5GHz, impedance } 50 \Omega, \\ \text { V.S.W.R. \&1.25, at } 20^{\circ} \mathrm{C} \text {, } \end{gathered}$
Expected life (min. operations)	Mechanical (at 180 cpm)		10^{7}
		1 W , at 5 GHz , V.S.W.R. \& 1.25	10^{6}
	20cpm)	10mA 10V DC (resistive load)	10^{6}
Coil (at $20^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}$)			
		Nominal operating power	
Single side stable		200 mW	
2 coil latching		150 mW	

Characteristics

Initial insulation resistance*1			Min. $500 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*2 for 1 min .	Between open contacts		500 Vrms
	Between contact sets		500 Vrms
	Between contact and coil		500 Vrms
	Between coil and earth terminal		500 Vrms
	Between contact and earth terminal		500 Vrms
Operate time [Set time]*3 (at $20^{\circ} \mathrm{C}$)			Max. 5ms [Max. 5 ms]
Release time (without diode)[Reset time] ${ }^{\star 3}$$\text { (at } 20^{\circ} \mathrm{C} \text {) }$			Max. 5ms [Max. 5 ms]
Temperature rise (at $20^{\circ} \mathrm{C}$)*4			Max. $50^{\circ} \mathrm{C}$
Shock resistance		Functional*5	Min. $500 \mathrm{~m} / \mathrm{s}^{2}$
		Destructive*6	Min. 1,000 m/s ${ }^{2}$
Vibration resistance		Functional*7	10 to 55 Hz at double amplitude of 3 mm
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & -22^{\circ} \mathrm{F} \text { to } 158^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 3 g .11 oz

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
${ }^{* 3}$ Nominal operating voltage applied to the coil, excluding contact bounce time.
${ }^{* 4}$ By resistive method, nominal voltage applied to the coil, 5GHz, V.S.W.R. \& 1.25
${ }^{*}$ Half-wave pulse of sine wave: 6 ms , detection time: $10 \mu \mathrm{~s}$.
${ }^{*}$ Pulse of sine wave: 11 ms .
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to 6. Conditions for operation, transport and storage conditions in NOTES (Page 20).

RJ (ARJ)

ORDERING INFORMATION

Ex. ARJ 2				
Contact arrangement	Operating function	Terminal shape	Coil voltage (DC)	Packing style
2: 2 Form C	0: Single side stable 2: 2 coil latching	Nil: Standard PC board terminal A: Surface-mount terminal	$\begin{aligned} & 03: 3 \mathrm{~V} \\ & 4 \mathrm{H}: 4.5 \mathrm{~V} \\ & 12: 12 \mathrm{~V} \\ & 24: 24 \mathrm{~V} \end{aligned}$	Nil: Carton packing X: Tape end reel packing (picked from 1/2/3-pin side) Z: Tape and reel packing (picked from 6/7/8-pin side)

Note: Tape and reel packing symbol "-Z" is not marked on the relay. " X " type tape and reel packing (picked from 1/2/3-pin side) is also available. Suffix "X" instead of " Z ".

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

1. Standard PC board terminal

- Packing of standard PC board terminal: 50 pcs. in an inner package (carton); 500 pcs. in an outer package

Operating function	Coil Rating,V DC	Part No.	Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.) (initial)	Nominal operating current, mA ($\pm 10 \%$)	Coil resistance,$\Omega(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC (at $70^{\circ} \mathrm{C}$ $158^{\circ} \mathrm{F}$)
		Standard PC board terminal						
Single side stable	3	ARJ2003	2.25	0.3	66.6	45	200	3.3
	4.5	ARJ204H	3.375	0.45	44.4	101.2	200	4.95
	12	ARJ2012	9	1.2	16.6	720	200	13.2
	24	ARJ2024	18	2.4	8.3	2,880	200	26.4

Operating function	Coil Rating, V DC	Part No.	Set voltage, V DC (max.) (initial)	Reset voltage, V DC (min.) (initial)	Nominal operating current, mA ($\pm 10 \%$)	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating power, mW	Max. allowable voltage, V DC (at $70^{\circ} \mathrm{C}$ $158^{\circ} \mathrm{F}$)
		Standard PC board terminal						
$\begin{aligned} & 2 \text { coil } \\ & \text { latching } \end{aligned}$	3	ARJ2203	2.25	2.25	50	60	150	3.3
	4.5	ARJ224H	3.375	3.375	33.3	135	150	4.95
	12	ARJ2212	9	9	12.5	960	150	13.2
	24	ARJ2224	18	18	6.3	3,840	150	26.4

2. Surface-mount terminal

- Packing of surface-mount terminal: 50 pcs. in an inner package (carton); 500 pcs. in an outer package
- Packing of surface-mount terminal: 500 pcs. in an inner package (tape and reel); 500 pcs . in an outer package

Operating function	Coil Rating,V DC	Part No.		Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.) (initial)	Nominal operating current, mA ($\pm 10 \%$)	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating power, mW	Max. allowable voltage, V DC (at $70^{\circ} \mathrm{C}$ $158^{\circ} \mathrm{F}$)
		Carton packing	Tape and reel packing						
Single side stable	3	ARJ20A03	ARJ20A03Z	2.25	0.3	66.6	45	200	3.3
	4.5	ARJ20A4H	ARJ20A4HZ	3.375	0.45	44.4	101.2	200	4.95
	12	ARJ20A12	ARJ20A12Z	9	1.2	16.6	720	200	13.2
	24	ARJ20A24	ARJ20A24Z	18	2.4	8.3	2,880	200	26.4

Operating function	Coil Rating, V DC	Part No.		Set voltage, V DC (max.) (initial)	Resetvoltage, V DC(min.) (initial)	Nominal operating current, mA ($\pm 10 \%$)	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating power, mW	Max. allowable voltage, V DC (at $70^{\circ} \mathrm{C}$ $158^{\circ} \mathrm{F}$)
		Carton packing	Tape and reel packing						
$2 \text { coil }$ latching	3	ARJ22A03	ARJ22A03Z	2.25	2.25	50	60	150	3.3
	4.5	ARJ22A4H	ARJ22A4HZ	3.375	3.375	33.3	135	150	4.95
	12	ARJ22A12	ARJ22A12Z	9	9	12.5	960	150	13.2
	24	ARJ22A24	ARJ22A24Z	18	18	6.3	3,840	150	26.4

REFERENCE DATA

1. High frequency characteristics

Sample: ARJ20A12
Measuring method: Measured with MEW PC board by HP network analyzer (HP8510C).

- V.S.W.R. characteristics

- Insertion loss characteristics (without D.U.T. board's loss)

- Isolation characteristics

DIMENSIONSmm inch

Download
CAD Data
from our Web site.

1. Standard PC board terminal

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 20 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since RJ relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick.
It is recommended that alcoholic solvents be used.

5. Tape and reel packing

1) Tape dimensions

2) Dimensions of plastic reel

6. Conditions for operation, transport and storage conditions

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay: (1) Temperature:
-30 to $+70^{\circ} \mathrm{C}-22$ to $+158^{\circ} \mathrm{F}$
(However, tolerance range is -30 to $+60^{\circ} \mathrm{C}-22$ to $+140^{\circ} \mathrm{F}$ if package is carried as is.)
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.
5) Storage procedures for surface-mount terminal types
Since the relay is very sensitive to humidity, it is packed in humidity-free, hermetically sealed packaging. When storing the relay, be careful of the following points:
(1) Be sure to use the relay immediately after removing it from its sealed package.
(2) When storing the relay for long periods of time after removing it from its sealed package, we recommend using a humidity-free bag with silica gel to prevent subjecting the relay to humidity. Furthermore, if the relay is solder mounted when it has been subjected to excessive humidity, cracks and leaks can
occur. Be sure to mount the relay under the required mounting conditions.

7. Soldering

1) Surface-mount terminal

In case of automatic soldering, the
following conditions should be observed
(1) Position of measuring temperature

(2) IR (infrared reflow) soldering method

Temperature rise of relay itself may vary according to the mounting level or the heating method of reflow equipment. Therefore, please set the temperature of soldering portion of relay terminal and the top surface of the relay case not to exceed the above mentioned soldering condition.
It is recommended to check the temperature rise of each portion under actual mounting condition before use.
2) Standard PC board terminal Please meet the following conditions if this relay is to be automatically soldered.
(1) Preheating: Max. $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$
(terminal solder surface) for max. 120 seconds
(2) Soldering: Max. $260 \pm 5^{\circ} \mathrm{C} 500 \pm 9^{\circ} \mathrm{F}$ for max. 6 seconds
The effect on the relay depends on the actual substrate used. Please verify the substrate to be used.
Moisture-proof packaging enables RJ relay's standard PCB type capable for reflow soldering.
Please contact us in the case of reflow soldering considerations.
3) Hand soldering

Please meet the following conditions if this relay is to be soldered by hand.
(1) Wattage: 30 to 60 W
(2) Tip temperature/time: 280 to $300^{\circ} \mathrm{C}$

536 to $572^{\circ} \mathrm{F}$ for max. 5 seconds
The effect on the relay depends on the actual substrate used. Please verify the substrate to be used.
4) Avoid high frequency cleaning since this may adversely affect relay characteristics. Use alcohol-based cleaning solutions when cleaning relays.
8. Measuring method (Impedance 50Ω)

(Step 1) Calibrate the test system with HP calibration kit [HP85052B]
(Step 2) After calibration, connect the D.U.T. board and measure. Connect 50Ω terminals on connectors other than those for measurement.

Notes)

1. All bottom surface of the base should be touched closely or soldered with PC board ground.
2. 4 ribs should be soldered with PC board ground.

Measuring board

1) Dimensions
<Surface mount terminal>

<Standard PC board terminal>

<Calibration board>

2) Material: Glass PTFE double-sided through hole PC board R-4737
(Matsushita Electric Works)
3) Board thickness: $t=0.8 \mathrm{~mm}$
4) Copper plating: $18 \mu \mathrm{~m}$

- Connector (SMA type receptacle)

Product name: R125 510 (RADIALL)
Insertion loss compensation
The insertion loss of relay itself is given by subtracting the insertion loss of shortcircuit the Com and the NC (or NO).
(signal path and two connectors)

9. Others

1) The switching lifetime is defined under the standard test condition specified in the JIS* C 5442-1996 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to 75%). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.

- When used for AC load-operating and the operating phase is synchronous. Rocking and fusing can easily occur due
to contact shifting.
- High-frequency load-operating When high-frequency opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.
(1) Incorporate an arc-extinguishing circuit.
(2) Lower the operating frequency
(3) Lower the ambient humidity

2) Use the relay within specifications such as coil rating, contact rating and on/ off service life. If used beyond limits, the relay may overheat, generate smoke or catch fire.
3) Be careful not to drop the relay. If accidentally dropped, carefully check its appearance and characteristics before use.
4) Be careful to wire the relay correctly. Otherwise, malfunction, overheat, fire or other trouble may occur.
5) If a relay stays on in a circuit for many months or years at a time without being activated, circuit design should be reviewed so that the relay can remain non-excited. A coil that receives current all the time heats, which degrades insulation earlier than expected. A latching type relay is recommended for such circuits.
6) The latching type relay is shipped in the reset position. But jolts during transport or impacts during installation can change the reset position. It is, therefore, advisable to build a circuit in which the relay can be initialized (set and reset) just after turning on the power.
7) If silicone materials (e.g., silicone rubbers, silicone oils, silicone coating agents, silicone sealers) are used in the vicinity of the relay, the gas emitted from the silicone may adhere to the contacts of the relay during opening and closing and lead to improper contact. If this is the case, use a material other than silicone. 8) We recommend latching type when using in applications which involve lengthy duty cycles.

* Japanese Industrial Standards

For complete "Cautions for Use", please download the "Relay Technical Information" from our Web site. For instructions on soldering, see page 66. For information on reliability, see page 64.

Panasonic ideas for life

FEATURES

1. Super miniature design
$14 \times 8.6 \times 7.2 \mathrm{~mm} .551 \times .339 \times .283$ inch (standard PC board terminal)

2. Lineup includes silent type.

(75Ω type only)

Operation noise (Unit: dB)

3 GHz microwave relays

 miniature size lineup includes $50 / 75 \Omega$ type
RS RELAYS (ARS)

3. Excellent high frequency

 characteristics- Impedance: 50Ω
(Standard PC board terminal)

Frequency	to 900 MHz	to 3 GHz
V. S. W. R. (Max.)	1.20	1.40
Insertion loss (dB, Max.)	0.10	0.35
Isolation (dB, Min.)	60	35

- Impedance: 75Ω
(Standard PC board terminal)

Frequency	to 900 MHz	to 3 GHz
V. S. W. R. (Max.)	1.15	1.40
Insertion loss (dB, Max.)	0.10	0.30
Isolation (dB, Min.)	60	30

- Impedance: 50Ω
(Surface-mount terminal)

Frequency	to 900 MHz	to 3 GHz
V. S. W. R. (Max.)	1.20	1.40
Insertion loss (dB, Max.)	0.20	0.40
Isolation (dB, Min.)	55	30

- Impedance: 75Ω
(Surface-mount terminal)

Frequency	to 900 MHz	to 3 GHz
V. S. W. R. (Max.)	1.20	1.50
Insertion loss (dB, Max.)	0.20	0.50
Isolation (dB, Min.)	55	30

4. Lineup includes surface-mount terminal type

E and Y layouts available.
5. Lineup includes reversed contact type
Great design freedom is possible using reversed contact type in which the positions of the N.O. and N.C. contacts are switched.

TYPICAL APPLICATIONS

1. Broadcasting and video equipment markets

- Digital broadcasting equipment
- STB/tuner, etc.

2. Mobile phone base stations
3. Communications market

- Antenna switching
- All types of wireless devices

4. Measurement equipment market

- Spectrum analyzer and oscilloscope, etc.

ORDERING INFORMATION

TYPES

1. Standard PC board terminal and standard contact type

Impedance	Nominal coil voltage	Part No.			
		Single side stable type	1 coil latching type		2 coil latching type
50Ω	3 V DC	ARS1403	ARS1503		ARS1603
	4.5 V DC	ARS144H	ARS154H		ARS164H
	9 V DC	ARS1409	ARS1509		ARS1609
	12 V DC	ARS1412	ARS1512		ARS1612
	24 V DC	ARS1424	ARS1524		ARS1624
Impedance	Nominal coil voltage	Part No.			
		Standard type			Silent type
		Single side stable type	1 coil latching type	2 coil latching type	Single side stable type
75Ω	3 V DC	ARS1003	ARS1103	ARS1203	ARS1303
	4.5 V DC	ARS104H	ARS114H	ARS124H	ARS134H
	9 V DC	ARS1009	ARS1109	ARS1209	ARS1309
	12 V DC	ARS1012	ARS1112	ARS1212	ARS1312
	24 V DC	ARS1024	ARS1124	ARS1224	ARS1324

Standard packing: 50 pcs . in an inner package; 500 pcs. in an outer package

2. Standard PC board terminal and reversed contact type

Impedance	Nominal coil voltage	Part No.			
		Single side stable type	1 coil latching type		2 coil latching type
50Ω	3 V DC	ARS3403	ARS3503		ARS3603
	4.5 V DC	ARS344H	ARS354H		ARS364H
	9 V DC	ARS3409	ARS3509		ARS3609
	12 V DC	ARS3412	ARS3512		ARS3612
	24 V DC	ARS3424	ARS3524		ARS3624
Impedance	Nominal coil voltage	Part No.			
		Standard type			Silent type
		Single side stable type	1 coil latching type	2 coil latching type	Single side stable type
75Ω	3 V DC	ARS3003	ARS3103	ARS3203	ARS3303
	4.5 V DC	ARS304H	ARS314H	ARS324H	ARS334H
	9 V DC	ARS3009	ARS3109	ARS3209	ARS3309
	12 V DC	ARS3012	ARS3112	ARS3212	ARS3312
	24 V DC	ARS3024	ARS3124	ARS3224	ARS3324

Standard packing: 50 pcs. in an inner package; 500 pcs. in an outer package
3. Surface-mount terminal and standard contact type, E layout

Impedance	Nominal coil voltage	Part No.		
		Single side stable type	1 coil latching type	2 coil latching type
50Ω	3 V DC	ARS14A03]	ARS15A03]	ARS16A03D
	4.5 V DC	ARS14A4HD	ARS15A4HD	ARS16A4HD
	9 V DC	ARS14A09]	ARS15A09]	ARS16A09]
	12 V DC	ARS14A12]	ARS15A12]	ARS16A12]
	24 V DC	ARS14A24]	ARS15A24]	ARS16A24]
75Ω	3 V DC	ARS10A03]	ARS11A03]	ARS12A03]
	4.5 V DC	ARS10A4HD	ARS11A4HD	ARS12A4HD
	9 V DC	ARS10A09]	ARS11A09]	ARS12A09]
	12 V DC	ARS10A12]	ARS11A12]	ARS12A12]
	24 V DC	ARS10A24]	ARS11A24]	ARS12A24]

Standard packing: 40 pcs. in an inner package (tube); 1,000 pcs. in an outer package
Standard packing: 500 pcs. in an inner package (tape and reel); 500 pcs. in an outer package
Note: The box at the end of a part number shows where packing type is indicated. If there is no indication, tube packing will be used.
If " X " or " Z " is added, tape and reel packing will be used. Example: ARS14A03 (tube packing), ARS14A03X (tape and reel packing)

4. Surface-mount terminal and standard contact type, Y layout

Impedance	Nominal coil voltage	Part No.		
		Single side stable type	1 coil latching type	2 coil latching type
50Ω	3 V DC	ARS14Y03]	ARS15Y03]	ARS16Y03]
	4.5 V DC	ARS14Y4HD	ARS15Y4HD	ARS16Y4HD
	9 V DC	ARS14Y09]	ARS15Y09]	ARS16Y09]
	12 V DC	ARS14Y12]	ARS15Y12]	ARS16Y12]
	24 V DC	ARS14Y24]	ARS15Y24]	ARS16Y24]
75Ω	3 V DC	ARS10Y03]	ARS11Y03]	ARS12Y03]
	4.5 V DC	ARS10Y4HD	ARS11Y4HD	ARS12Y4HD
	9 V DC	ARS10Y09]	ARS11Y09]	ARS12Y09]
	12 V DC	ARS10Y12]	ARS11Y12]	ARS12Y12]
	24 V DC	ARS10Y24]	ARS11Y24]	ARS12Y24]

Standard packing: 40 pcs. in an inner package (tube); 1,000 pcs. in an outer package
Standard packing: 500 pcs . in an inner package (tape and reel); 500 pcs . in an outer package
Note: The box at the end of a part number shows where packing type is indicated. If there is no indication, tube packing will be used. If " X " or " Z " is added, tape and reel packing will be used. Example: ARS14Y03 (tube packing), ARS14Y03X (tape and reel packing)

RS

5. Surface-mount terminal and reversed contact type, E layout

Impedance	Nominal coil voltage	Part No.		
		Single side stable type	1 coil latching type	2 coil latching type
50Ω	3 V DC	ARS34A03]	ARS35A03]	ARS36A03]
	4.5 V DC	ARS34A4HD	ARS35A4HD	ARS36A4HD
	9 V DC	ARS34A09]	ARS35A09]	ARS36A09]
	12 V DC	ARS34A12]	ARS35A12]	ARS36A12]
	24 V DC	ARS34A24]	ARS35A24]	ARS36A24]
75Ω	3 V DC	ARS30A03]	ARS31A03]	ARS32A03D
	4.5 V DC	ARS30A4HD	ARS31A4HD	ARS32A4HD
	9 V DC	ARS30A09]	ARS31A09]	ARS32A09]
	12 V DC	ARS30A12]	ARS31A12]	ARS32A12]
	24 V DC	ARS30A24]	ARS31A24]	ARS32A24]

Standard packing: 40 pcs. in an inner package (tube); 1,000 pcs. in an outer package
Standard packing: 500 pcs . in an inner package (tape and reel); 500 pcs . in an outer package
Note: The box at the end of a part number shows where packing type is indicated. If there is no indication, tube packing will be used
If " X " or " Z " is added, tape and reel packing will be used. Example: ARS34A03 (tube packing), ARS34A03X (tape and reel packing)
6. Surface-mount terminal and reversed contact type, Y layout

Impedance	Nominal coil voltage	Part No.		
		Single side stable type	1 coil latching type	2 coil latching type
50Ω	3 V DC	ARS34Y03]	ARS35Y03]	ARS36Y03]
	4.5 V DC	ARS34Y4HD	ARS35Y4HD	ARS36Y4HD
	9 V DC	ARS34Y09]	ARS35Y09]	ARS36Y09]
	12 V DC	ARS34Y12]	ARS35Y12]	ARS36Y12]
	24 V DC	ARS34Y24]	ARS35Y24]	ARS36Y24]
75Ω	3 V DC	ARS30Y03]	ARS31Y03]	ARS32Y03]
	4.5 V DC	ARS30Y4HD	ARS31Y4HD	ARS32Y4HD
	9 V DC	ARS30Y09]	ARS31Y09]	ARS32Y09]
	12 V DC	ARS30Y12]	ARS31Y12]	ARS32Y12]
	24 V DC	ARS30Y24]	ARS31Y24]	ARS32Y24]

Standard packing: 40 pcs. in an inner package (tube); 1,000 pcs. in an outer package
Standard packing: 500 pcs . in an inner package (tape and reel); 500 pcs . in an outer package
Note: The box at the end of a part number shows where packing type is indicated. If there is no indication, tube packing will be used. If " X " or " Z " is added, tape and reel packing will be used. Example: ARS34Y03 (tube packing), ARS34Y03X (tape and reel packing)

RATING

1. Coil data

1) Single side stable type

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \begin{array}{c} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	66.7 mA	45Ω	200 mW	$110 \% \mathrm{~V}$ or less of nominal voltage
4.5 V DC			44.4 mA	101.3Ω		
9 V DC			22.2 mA	405Ω		
12 V DC			16.7 mA	720Ω		
24 V DC			8.3 mA	2,880 Ω		

2) 1 coil latching type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	66.7 mA	45Ω	200 mW	$110 \% \mathrm{~V}$ or less of nominal voltage
4.5 V DC			44.4 mA	101.3Ω		
9 V DC			22.2 mA	405Ω		
12 V DC			16.7 mA	720Ω		
24 V DC			8.3 mA	2,880 Ω		

3) 2 coil latching type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	133.3 mA	22.5Ω	400 mW	$110 \% \mathrm{~V}$ or less of nominal voltage
4.5 V DC			88.9 mA	50.6Ω		
9 V DC			44.4 mA	202.5Ω		
12 V DC			33.3 mA	360Ω		
24 V DC			16.7 mA	1,440 Ω		

2. Specifications

Item			Specifications
Contact	Arrangement		1 Form C
	Contact material		Gold plating
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 10 V AC 10mA)
Rating	Nominal switching capacity		1W (at 3 GHz , Impedance: 50/75 , V.S.W.R.: Max. 1.4), 10 mA 24 V DC (resistive load)
	Contact carrying power		Max. 10W (at 3GHz, Impedance: 50/75 , V.S.W.R.: Max. 1.4)
	Max. switching voltage		30 V DC
	Max. switching current		0.5 A DC
	Nominal operating power	Single side stable type	200 mW
		1 coil latching type	200mW
		2 coil latching type	400 mW
High frequency characteristics, Impedance: 50Ω (Initial)	V.S.W.R.		Max. 1.20/900MHz, Max. 1.40/3GHz (Standard PC board terminal) Max. 1.20/900MHz, Max. $1.40 / 3 \mathrm{GHz}$ (Surface-mount terminal)
	Insertion loss (without D.U.T. board's loss)		Max. $0.10 \mathrm{~dB} / 900 \mathrm{MHz}$, Max. $0.35 \mathrm{~dB} / 3 \mathrm{GHz}$ (Standard PC board terminal) Max. $0.20 \mathrm{~dB} / 900 \mathrm{MHz}$, Max. $0.40 \mathrm{~dB} / 3 \mathrm{GHz}$ (Surface-mount terminal)
	Isolation		Min. $60 \mathrm{~dB} / 900 \mathrm{MHz}$, Min. 35dB/3GHz (Standard PC board terminal) Min. 55dB/900MHz, Min. 30dB/3GHz (Surface-mount terminal)
High frequency characteristics, Impedance: 75Ω (Initial)	V.S.W.R.		Max. $1.15 / 900 \mathrm{MHz}$, Max. $1.40 / 3 \mathrm{GHz}$ (Standard PC board terminal) Max. 1.20/900MHz, Max. $1.50 / 3 \mathrm{GHz}$ (Surface-mount terminal)
	Insertion loss (without D.U.T. board's loss)		Max. $0.10 \mathrm{~dB} / 900 \mathrm{MHz}$, Max. $0.30 \mathrm{~dB} / 3 \mathrm{GHz}$ (Standard PC board terminal) Max. $0.20 \mathrm{~dB} / 900 \mathrm{MHz}$, Max. $0.50 \mathrm{~dB} / 3 \mathrm{GHz}$ (Surface-mount terminal)
	Isolation		Min. $60 \mathrm{~dB} / 900 \mathrm{MHz}$, Min. $30 \mathrm{~dB} / 3 \mathrm{GHz}$ (Standard PC board terminal) Min. $55 \mathrm{~dB} / 900 \mathrm{MHz}$, Min. $30 \mathrm{~dB} / 3 \mathrm{GHz}$ (Surface-mount terminal)
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC, Measurement at same location as "Breakdown voltage" section.)
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1min. (Detection current: 10 mA)
		Between contact and earth terminal	500 Vrms for 1min. (Detection current: 10 mA)
		Between contact and coil	1,000 Vrms for 1min. (Detection current: 10 mA)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$ (By resistive method, nominal voltage applied to the coil, contact carrying current: 10 mA)
	Operate time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms (Nominal voltage applied to the coil, excluding contact bounce time)
	Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 6 ms (Nominal voltage applied to the coil, excluding contact bounce time) (without diode)
	Set time and Reset time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms (Nominal voltage applied to the coil, excluding contact bounce time)
Mechanical characteristics	Shock resistance	Functional	Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Operation noise*	Standard type		Approx. 40dB
	Silent type (75Ω, PC board terminal type only)		Approx. 30dB
Expected life	Mechanical life	Single side stable standard type	Min. 5×10^{6} (at 180 cpm)
		Single side stable silent type	Min. 10^{6} (at 180 cpm)
		Latching type	Min. 10^{6} (at 180 cpm)
	Electrical life	50Ω type	Min. 10^{6} (Standard PC board terminal), Min. 3×10^{5} (Surface-mount terminal) (10V DC 10mA resistive load)/Min. 3×10^{5} (24 V DC 10mA resistive load) Min. 10^{6} (Standard PC board terminal), Min. 3×10^{5} (Surface-mount terminal) (1W, at 3GHz, Impedance: 50 , V.S.W.R: Max. 1.4) (at 20 cpm)
		75Ω type	Min. 3×10^{5} (10 mA 24 V DC resistive load) Min. 3×10^{5} (1W, at 3GHz, Impedance: 75Ω, V.S.W.R: Max. 1.4) (at 20 cpm)
Conditions	Conditions for	operation, transport and storage	Ambient temperature: -40 to $70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$ (Single side stable standard and Latching type) Ambient temperature: -40 to $60^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ (Single side stable silent type) Humidity: 5 to 85\% R.H. (Not freezing and condensing at low temperature)
Unit weight			Approx. 2 g .071 oz

* Measured the operation noise of the relay alone (with diodes at both ends of the coil) 30 cm away from top side, by the A-weighted, FAST method while applying the rated voltage.
(Reference) Operation noise of RK relay (existing model): Approx. 50dB

RS

REFERENCE DATA

1.-(1) High frequency characteristics (Impedance: 50Ω, Standard PC board terminal)

Sample: ARS144H; Measuring method: Measured with Agilent Technologies network analyzer (E8363B). *For details see No. 7 under "NOTES".

- V.S.W.R. characteristics
- Insertion loss characteristics
(without D.U.T. board's loss)

- Isolation characteristics

1.-(2) High frequency characteristics (Impedance: 75Ω, Standard PC board terminal)

Sample: ARS104H; Measuring method: Measured with Agilent Technologies network analyzer (E8363B). *For details see No. 7 under "NOTES".

- V.S.W.R. characteristics

- Insertion loss characteristics
(without D.U.T. board's loss)

\rightarrow Frequency
- Isolation characteristics

1.-(3) High frequency characteristics (Impedance: 50Ω, Surface-mount terminal)

Sample: ARS14A4H; Measuring method: Measured with Agilent Technologies network analyzer (E8363B). *For details see No. 7 under "NOTES".

- V.S.W.R. characteristics

- Insertion loss characteristics (without D.U.T. board's loss)

- Isolation characteristics

1.-(4) High frequency characteristics (Impedance: 75Ω, Surface-mount terminal)

Sample: ARS10A4H; Measuring method: Measured with Agilent Technologies network analyzer (E8363B). *For details see No. 7 under "NOTES".

- V.S.W.R. characteristics

- Insertion loss characteristics (without D.U.T. board's loss)

- Isolation characteristics

2.-(1) Operation noise distribution

Sample: ARS134H (single side stable silent type),
50 pcs.
Coil voltage: rated voltage applied (with diode)
Equipment setting: A weighted sound pressure level,
FAST.
Background noise: approx. 20 dB
Method of measurement: See figure below.

2.-(2) Operation noise distribution

Sample: ARS104H (single side stable standard type), 50 pcs .
Coil voltage: rated voltage applied (with diode)
Equipment setting: A weighted sound pressure level,
FAST.
Background noise: approx. 20 dB
Method of measurement: See figure below.

2.-(3) Operation noise distribution

Sample: ARS114H (latching type), 50 pcs.
Coil voltage: rated voltage applied (with diode)
Equipment setting: A weighted sound pressure level,
FAST.
Background noise: approx. 20 dB
Method of measurement: See figure below.

DIMENSIONS (mm inch)

<Standard PC board terminal>

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

1. Standard contact type
Single side stable type
1 coil latching type
(Deenergized condition)
(Reset condilion) latching type \quad (Reset condition)
(Reset condition)
(Reset condition)
2. Reversed contact type

Single side stable type	1 coil latching type
(Deenergized condition)	2 coil latching type (Reset condition) (Reset condition)

<Surface-mount terminal>

1. Impedance: 50Ω type

1) E layout

External dimensions
Schematic (Top view)
CAD Data

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%. However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 30 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since RS relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick.
It is recommended that alcoholic solvents be used.

5. Conditions for operation, transport and storage conditions

1) Temperature

- Single side stable standard and latching type: -40 to $70^{\circ} \mathrm{C}-40$ to $158^{\circ} \mathrm{F}$
- Single side stable silent type:
-40 to $60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$

2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.)
The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:
Single side stable standard and latching type

Single side stable silent type

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.

5) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
6) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.
7) Storage requirements

Since the relay is sensitive to humidity, the surface-mount type is packaged with tightly sealed anti-humidity packaging. However, when storing, please be careful of the following.
(1) Please use promptly once the antihumidity pack is opened.
If relays are left as is after unpacking, they will absorb moisture which will result in loss of air tightness as a result of case expansion due to thermal stress when reflow soldering during the mounting process. (within one day, $30^{\circ} \mathrm{C}$ and 60% R.H or less)
(2) When storing for a log period after opening the anti-humidity pack, storage in anti-humidity packaging with an antihumidity bag to which silica gel has been added, is recommended.
*Furthermore, if the relay is solder mounted when it has been subjected to excessive humidity, cracks and leaks can occur. Be sure to mount the relay under the required mounting conditions.

6. Soldering

1) Please meet the following conditions if this relay is to be automatically soldered.
(1) Preheating: Max. $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ (terminal solder surface) for max. 120 seconds
(2) Soldering: Max. $260 \pm 5^{\circ} \mathrm{C} 500 \pm 9^{\circ} \mathrm{F}$ for max. 6 seconds
*Relays are influenced by the type of PC board used. Please confirm with the actual PC board you plan to use.
*Please avoid reflow soldering.
2) Surface-mount terminal

In case of automatic soldering, the
following conditions should be observed
(1) Position of measuring temperature

A: Surface of PC board where relay is mounted.
(2) IR (infrared reflow) soldering method

- Mounting cautions

Rise in relay temperature depends greatly on the component mix on a given PC board and the heating method of the reflow equipment. Therefore, please test beforehand using actual equipment to ensure that the temperature where the relay terminals are soldered and the temperature at the top of the relay case are within the conditions given above.
3) Please meet the following conditions if this relay is to be soldered by hand.
(1) $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$ for max. 10 seconds
(2) $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ for max. 3 seconds

The effect on the relay depends on the actual substrate used. Please verify the substrate to be used.
(3) Avoid ultrasonic cleaning. Doing so will adversely affect relay characteristics. Please use alcohol-based cleaning solvents when cleaning relays.

7. Tape and reel packing

1) Tape dimensions

2) Dimensions of plastic reel

8. Measuring method

1) 50Ω type

Connect connectors 1 and 2 respectively to PORT 1 and PORT 2. Perform calibration using the 3.5 mm calibration kit (HP85052B).

No.	Product name	Contents
1	Agilent	Adapter 85130-60011
$2.4 \mathrm{~mm}-3.5 \mathrm{~mm}$ female		
2	SUHNER	SU5inch-.138inch female
SUCOFLEX104	Cable 3.5mm-3.5mm male 138inch-.138inch male	

After calibration, connect the D.U.T. board and measure. However, connectors other than those for measurement should be connected with a 50Ω termination resistor.

<Standard PC board terminal>

PC board
Dimensions (mm inch)

<Surface-mount terminal and
E layout>
PC board
Dimensions (mm inch)

<Surface-mount terminal and Y layout>
PC board
Dimensions (mm inch)

PC board for correction
Dimensions (mm inch)

Material: Glass PTFE double-sided through hole PC board R-4737 (Matsushita Electric Works) Board thickness: $\mathrm{t}=0.8 \mathrm{~mm} .031$ inch Copper plating: $18 \mu \mathrm{~m}$ Connector (SMA type receptacle) Product name: 01K1808-00 (Waka Manufacturing Co., Ltd.)
Insertion loss compensation
The insertion loss of relay itself is given by subtracting the insertion loss of shortcircuit the Com and the NC (or NO). (signal path and two connectors)
2) 75Ω type

Connect connectors 1 and 2 respectively to PORT 1 and PORT 2, and then perform calibration using the $75 \Omega \mathrm{~F}$ type.

No.	Product name	Contents
1	$85134-60003$	Test port cable
2	11852 B	Conversion adapter; $50 \Omega \mathrm{~N}$ type (female) to $75 \Omega \mathrm{~N}$ type (ade)
2	$85039-60011$	Conversion adapter; $75 \Omega \mathrm{~N}$ type (female) to $75 \Omega \mathrm{~F}$ type (male)

After calibration, connect the D.U.T. board and measure. However, connectors other than those for measurement should be connected with a 75Ω termination resistor.
<Standard PC board terminal>
PC board
Dimensions (mm inch)

<Surface-mount terminal and
E layout>
PC board
Dimensions (mm inch)

<Surface-mount terminal and

Y layout>
PC board
Dimensions (mm inch)

PC board for correction
Dimensions (mm inch)

Material: Glass PTFE double-sided through hole PC board R-4737 (Matsushita Electric Works) Board thickness: $\mathrm{t}=0.8 \mathrm{~mm} .031$ inch Copper plating: $18 \mu \mathrm{~m}$ Connector (F type receptacle) Product name: C05-0236 (Komine Musen Electric Corporation)

Insertion loss compensation
The insertion loss of relay itself is given
by subtracting the insertion loss of shortcircuit the COM and the NC (or NO). (signal path and two connectors)

9. Others

1) The switching lifetime is defined under the standard test condition specified in the $\mathrm{JIS}^{*} \mathrm{C} 5442$ standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to $75 \%)$. Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.

- When used for AC load-operating and the operating phase is synchronous, rocking and fusing can easily occur due to contact shifting.
- When high-frequency opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.

Three countermeasures for these are listed here.
(1) Incorporate an arc-extinguishing circuit.
(2) Lower the operating frequency
(3) Lower the ambient humidity
2) Use the relay within specifications such as coil rating, contact rating and on/ off service life. If used beyond limits, the relay may overheat, generate smoke or catch fire.
3) Be careful not to drop the relay. If accidentally dropped, carefully check its appearance and characteristics before use.
4) Be careful to wire the relay correctly. Otherwise, malfunction, overheat, fire or other trouble may occur.
5) If a relay stays on in a circuit for many months or years at a time without being activated, circuit design should be reviewed so that the relay can remain non-excited. A coil that receives current all the time heats, which degrades insulation earlier than expected. A latching type relay is recommended for such circuits.
6) To ensure accurate operation of the latching type amidst surrounding temperature changes and other factors that might affect the set and reset pulse times, we recommend a coil impress set and reset pulse width of at least 30 ms at the rated operation voltage.
7) The latching type relay is shipped in the reset position. But jolts during transport or impacts during installation can change the reset position. It is, therefore, advisable to build a circuit in which the relay can be initialized (set and reset) just after turning on the power. 8) If silicone materials (e.g., silicone rubbers, silicone oils, silicone coating agents, silicone sealers) are used in the vicinity of the relay, the gas emitted from the silicone may adhere to the contacts of the relay during opening and closing and lead to improper contact. If this is the case, use a material other than silicone.

For complete "Cautions for Use", please download the "Relay Technical Information" from our Web site. For instructions on soldering, see page 66. For information on reliability, see page 64.

Panasonic ideas for life

2.6 GHz small microwave relays

FEATURES

- Excellent high frequency characteristics (to 2.6 GHz)

Type	Frequency	900 MHz	2.6 GHz
Imped- ance 50Ω	V.S.W.R. (Max.)	1.3	1.7
	Insertion loss (dB, Max.)	0.2	0.7
	Isolation (dB, Min.)	60	30
Imped- ance 75Ω	V.S.W.R. (Max.)	Insertion loss (dB, Max.)	0.2
	Isolation (dB, Min.)	60	30.5

- Surface-mount type also available
- Compact and slim size

Size: $20.2(\mathrm{~L}) \times 11.2(\mathrm{~W}) \times 8.9(\mathrm{H})^{*} \mathrm{~mm}$ $.795(\mathrm{~L}) \times .441(\mathrm{~W}) \times .350(\mathrm{H})$ inch
*The height of Surface-mount type is 9.6 mm .378 inch size.

TYPICAL APPLICATIONS

1. Broadcasting and video markets.

- Digital broadcasting market
- STB/tuner market, etc.

2. Communications market

- Antennae switching
- All types of wireless devices

SPECIFICATIONS

Contact

$\left.\begin{array}{l|l|c}\hline \text { Arrangement } & \text { 1 Form C } \\ \hline \text { Contact material } & \text { Gold plating } \\ \hline \begin{array}{l}\text { Initial contact resistance } \\ \text { (By voltage drop 10V DC 10mA) }\end{array} & \text { Max. 100m } \Omega\end{array}\right]$

Coil (at $20^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}$)

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{*}$ Measurement at same location as "Initial breakdown voltage" section.
*2 Detection current: 10 mA
${ }^{* 3}$ Nominal operating voltage applied to the coil, excluding contact bounce time.
${ }^{* 4}$ By resistive method, nominal voltage applied to the coil: Contact carrying power: 10W, at 2.6 GHz , [Impedance 75Ω, V.S.W.R. \& 1.5] [Impedance 50 2 , V.S.W.R. \& 1.7]
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$.
${ }^{* 6}$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to 5 . Conditions for operation, transport and storage conditions in NOTES (Page 36).

RE (ARE)

ORDERING INFORMATION

Contact arrangement	Operating function	Terminal shape	Coil voltage (DC)	Packing style
1: 1 Form C	0 : Single side stable type (Impedance 50 2) 3: Single side stable type (Impedance 75)	Nil: Standard PC board terminal A: Surface-mount terminal	03: 3 V 4H: 4.5 V 06: 6 V 09: 9 V 12: 12 V 24: 24 V	Nil: Carton packing (Standard PC board terminal only) Tube packing (Surface-mount terminal only) Z: Tape and reel packing (picked from 12/13/14 pin side)

Note: Tape and reel packing symbol "-Z" is not marked on the relay.
" X " type tape and reel packing (picked from 8/9/10/11/12/13/14-pin side) is also available.
Suffix "X" instead of "Z".

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

- Single side stable type (Impedance 50Ω)
- Packing of standard PC board terminal: 50 pcs. in an inner package (carton); 500 pcs . in an outer package.
- Packing of surface-mount terminal: 25 pcs. in an inner package (tube); 200 pcs. in an outer package.
- Packing of surface-mount terminal: 400 pcs. in an inner package (tape and reel); 800 pcs. in an outer package.

Standard PC board terminal	Surface-mount terminal	Nominal coil voltage, V DC	Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.)(initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC $\left(\right.$ at $\left.60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}\right)$
ARE1003	ARE10A03	3	2.25	0.3	45	66.7	200	3.3
ARE104H	ARE10A4H	4.5	3.375	0.45	101	44.4	200	4.95
ARE1006	ARE10A06	6	4.5	0.6	180	33.3	200	6.6
ARE1009	ARE10A09	9	6.75	0.9	405	22.2	200	9.9
ARE1012	ARE10A12	12	9	1.2	720	16.7	200	13.2
ARE1024	ARE10A24	24	18	2.4	2,880	8.3	200	26.4

- Single side stable type (Impedance 75 7)
- Packing of standard PC board terminal: 50 pcs. in an inner package (carton); 500 pcs. in an outer package.
- Packing of surface-mount terminal: 25 pcs. in an inner package (tube); 200 pcs. in an outer package.
- Packing of surface-mount terminal: 400 pcs. in an inner package (tape and reel); 800 pcs. in an outer package.

Standard PC board terminal	Surface-mount terminal	Nominal coil voltage, V DC	Pick-upvoltage, V DC (max.) (initial)	$\begin{gathered} \text { Drop-out } \\ \text { voltage, V DC } \\ \text { (min.)(initial) } \end{gathered}$	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
ARE1303	ARE13A03	3	2.25	0.3	45	66.7	200	3.3
ARE134H	ARE13A4H	4.5	3.375	0.45	101	44.4	200	4.95
ARE1306	ARE13A06	6	4.5	0.6	180	33.3	200	6.6
ARE1309	ARE13A09	9	6.75	0.9	405	22.2	200	9.9
ARE1312	ARE13A12	12	9	1.2	720	16.7	200	13.2
ARE1324	ARE13A24	24	18	2.4	2,880	8.3	200	26.4

DIMENSIONS mm inch

1. Standard PC board terminal ($50 \Omega, 75 \Omega$ type)

Download CAD Data from our Web site.

CAD Data

Schematic (Top view)

(Deenergized condition)
-75 7 type

Schematic (Top view)

(Deenergized condition)

REFERENCE DATA

1-(1). High frequency characteristics (Impedance 75 ${ }^{\text {) (Standard PC board terminal) }}$

- V.S.W.R. characteristics

- Insertion loss characteristics

- Isolation characteristics

1-(2). High frequency characteristics (Impedance 50 $)$) (Standard PC board terminal)

- V.S.W.R. characteristics

- Insertion loss characteristics

- Isolation characteristics

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5\%.
However, check it with the actual circuit since the characteristics may be slightly different.

2. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick.
It is recommended that alcoholic solvents be used.

3. Soldering

1) The manual soldering shall be performed under following condition.
Max. $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F} 10 \mathrm{~s}$
Max. $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F} 3 \mathrm{~s}$
The affect of the PCB on the relay will differ depending on the type of PCB used. Please verify the type of PCB to be used.
Preheat according to the following conditions.

Temperature	$120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ or less
Time	Within 2 minute

Soldering should be done at $260 \pm 5^{\circ} \mathrm{C}$ $500 \pm 9^{\circ} \mathrm{F}$ within 6 s .
2) In case of automatic soldering, the following conditions should be observed (Surface-mount terminal)
(1) Position of measuring temperature

A: Surface of PC board where relay is mounted. B: Above the PC board surface.
(2) IR (infrared reflow) soldering method

Temperature rise of relay itself may vary according to the mounting level or the heating method of reflow equipment.
Therefore, please set the temperature of soldering portion of relay terminal and the top surface of the relay case not to exceed the above mentioned soldering condition.
It is recommended to check the temperature rise of each portion under actual mounting condition before use.
4. Packing style

1) Tape dimensions

2) Dimensions of plastic reel

5. Conditions for operation, transport and storage conditions
1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

For complete "Cautions for Use", please download the "Relay Technical Information" from our Web site. For instructions on soldering, see page 66. For information on reliability, see page 64.

Panasonic ideas for life

Protective construction: Flux-resistant type

8 GHz*$^{*}, 150$ W carrying power (at 2 GHz) microwave relays
*Rating is 6 GHz . Please refer to "REFERENCE DATA" regarding usage between 6 and 8 GHz .

FEATURES

1. Miniature design and surface mount (SMD) type
L: $9.6 \times$ W: $14.6 \times \mathrm{H}: 10.0 \mathrm{~mm}$
L: . $378 \times$ W: $.575 \times \mathrm{H}: .394$ inch
2. High capacity type

150 W at 2 GHz
80 W at 2 GHz (hot switching)
3. Excellent ambient temperature profile
up to $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$
4. Excellent high frequency characteristics
Impedance: 50Ω

Frequency	up to 1 GHz	1 to 2 GHz	2 to 3 GHz	3 to 6 GHz
V. S. W. R. (Max.)	1.10	1.15	1.20	1.30
Insertion loss (dB, Max.)	0.10	0.12	0.15	0.50
Isolation (dB, Min.)	60	55	45	30

5. Lineup includes reversed contact type Great design freedom is possible using reversed contact type in which the positions of the N.O. and N.C. contacts are switched.

TYPICAL APPLICATIONS

1. Broadcasting and video equipment markets

- Digital broadcasting equipment

2. Mobile phone base stations
3. Communications market

- Antenna switching
- All types of wireless devices

4. Measurement equipment market

- Spectrum analyzers
- Oscilloscopes
- High frequency amplifiers

If you wish to use in applications with low level loads or with high frequency switching, please consult us.

ORDERING INFORMATION

ARN	A
Contact arrangement 1: 1 Form C standard contact type 3: 1 Form C reversed contact type (single side stable type only)	
Operating function 0 : Single side stable type 2: 2 coil latching type	
Terminal shape A: Surface mount terminal	
Coil voltage, DC* $4 \mathrm{H}: 4.5 \mathrm{~V}, 12: 12 \mathrm{~V}, 24: 24 \mathrm{~V}(\mathrm{H}=0.5)$ * For 28 V type, please consult us.	
Packing style Nil: Carton packing X: Tape and reel packing (picked from Z: Tape and reel packing (picked from	

RN (ARN)

TYPES

1. Single side stable type

Contact arrangement	Nominal coil voltage	Part No.		
		1.5 VDC		
1 Form C	12 V DC	ARN10A4H	Reversed contact type	
	24 V DC	ARN10A12	ARN30A4H	
	ARN10A24	ARN30A12		

Standard packing: 50 pcs . in an inner package (carton); 500 pcs . in an outer package

2. 2 coil latching type

Contact arrangement	Nominal coil voltage	
		Part No.
1 Form C	4.5 VDC	Standard contact type
	12 V DC	ARN12A4H
	24 V DC	ARN12A12

Standard packing: 50 pcs. in an inner package (carton); 500 pcs. in an outer package

3. Single side stable type

Contact arrangement	Nominal coil voltage	Part No.	
		Standard contact type	Reversed contact type
1 Form C	4.5 V DC	ARN10A4HD	ARN30A4HD
	12 VDC	ARN10A12]	ARN30A12]
	24 V DC	ARN10A24]	ARN30A24]

Standard packing: 400 pcs . in an inner package (tape and reel); 800 pcs . in an outer package

* Please add an X (picked from 1 pin side) or Z (picked from 13 pin side) at the end of the part number when ordering.
* Packing style symbol " X ", " Z " is not marked on the relay.

4. 2 coil latching type

Contact arrangement	Nominal coil voltage	Part No.
		Standard contact type
1 Form C	4.5 V DC	ARN12A4H
	12 VDC	ARN12A12-
	24 V DC	ARN12A24

Standard packing: 400 pcs. in an inner package (tape and reel); 800 pcs. in an outer package

* Please add an X (picked from 1 pin side) or Z (picked from 13 pin side) at the end of the part number when ordering.
* Packing style symbol " X ", " Z " is not marked on the relay.

RATING

1. Coil data

1) Single side stable type

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \\ \hline \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
4.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	71.1 mA	63.3Ω	320 mW	$110 \% \mathrm{~V}$ of nominal voltage
12 VDC			26.7 mA	450Ω		
24 V DC			13.3 mA	1,800 Ω		

2) 2 coil latching type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \quad \begin{array}{c} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{array} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
4.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	88.9 mA	50.6Ω	400 mW	$110 \% \mathrm{~V}$ of nominal voltage
12 V DC			33.3 mA	360Ω		
24 V DC			16.7 mA	1,440 Ω		

2. Specifications

Characteristics	Item		Specifications			
Contact	Arrangement		1 Form C			
	Contact material		Gold plating			
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 10 V AC 10mA)			
Rating	Nominal switching capacity		80 W (at 2 GHz , Impedance 50Ω, V.S.W.R. Max.1.15)			
	Contact carrying power (CW)*1		Max.150W (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (at 2 GHz , Impedance 50Ω, V.S.W.R. Max.1.15, with heat sink) Max.100W (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (at 2 GHz , Impedance 50Ω, V.S.W.R. Max.1.15, without heat sink)			
	Nominal operating power		Single side stable type: 320 mW , 2 coil latching type: 400 mW			
High frequency characteristics (to 6 GHz)			to 1 GHz	1 to 2 GHz	2 to 3 GHz	3 to 6 GHz
	V.S.W.R. (Max.)		1.1	1.15	1.2	1.3
	Insertion loss (without D.U.T. board's loss, dB, Max.)		0.1	0.12	0.15	0.5
	Isolation (dB, Min.)		60	55	45	30
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000 M 2 (at 500 V DC, Measurement at same location as "Breakdown voltage" section.)			
	Breakdown voltage (Initial)	Between open contacts	500 AC Vrms for 1min. (Detection current: 10 mA)			
		Between contact and earth terminal	500 AC Vrms for 1min. (Detection current: 10 mA)			
		Between contact and coil	500 AC Vrms for 1min. (Detection current: 10 mA)			
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 5 ms (Nominal voltage applied to the coil, excluding contact bounce time)			
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Single side stable type: Max. 5 ms (Nominal voltage applied to the coil, excluding contact bounce time)*2 2 coil latching type: Max. 5 ms (Nominal voltage applied to the coil, excluding contact bounce time)			
Mechanical characteristics	Shock resistance	Functional	Min. $490 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$)			
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms)			
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm .118 inch (Detection time: $10 \mu \mathrm{~s}$)			
		Destructive	10 to 55 Hz at double amplitude of 5 mm .197 inch			
	Mechanical life		Min. 1×10^{6} (at 180 cpm)			
Expected life	Electrical life (at 20 cpm)		- 1×10^{6} ope. at 10 mA 10 VDC resistive load, - 1×10^{6} ope. at 1 W High frequency load (at 2 GHz , Impedance 50Ω, V.S.W.R. Max.1.15), $\cdot 1 \times 10^{3}$ ope. at 80 W High frequency load, operating frequency 5.0 s ON, 5.0s OFF (at 2 GHz , Impedance 50Ω, V.S.W.R. Max. 1.15 , at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, with heatsink)			
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: -40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$, Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)			
Unit weight			Approx. 2.5 g .088 oz			

Notes: *1. Since the design of the PC board and heat dispersion conditions affect contact carrying power, please verify under actual conditions.
*2. Release time will lengthen if a diode, etc., is connected in parallel to the coil. Be sure to verify operation under actual conditions.

RN (ARN)

REFERENCE DATA

1. High frequency characteristics

Sample: ARN10A12

* For details see " 8 . Measuring method of high frequency characteristics (Impedance 50)" under "NOTES".
- V.S.W.R. characteristics

- Insertion loss characteristics (without D.U.T. board's loss)

- Isolation characteristics

2. Contact carrying power (CW)

Max. 150 W (whith heat sink) (at 2 GHz , Impedance 50Ω, V.S.W.R. Max. 1.15 , at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
Max. 100 W (whithout heat sink) (at 2 GHz , Impedance 50Ω, V.S.W.R. Max. 1.15 , at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Measuring conditions:
Heat sink (AQP-HS-SJ2OA) is used. (Reference: $2.9^{\circ} \mathrm{C} 37.22^{\circ} \mathrm{F} / \mathrm{W}$)

Heat sink (AQP-HS-SJ20A) (mm inch)
External dimensions

Download

CAD Data from our Web site.

External dimensions

Schematic

Single side stable type/Standard contact type

(Deenergized condition)

Single side stable type/Reversed contact type

(Deenergized condition)

2 coil latching type/Standard contact type

(Reset condition)

[^0]: *Ratings are 5GHz

