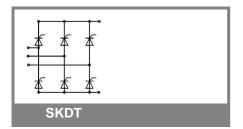
SKDT 100

SEMIPONT[®] 2

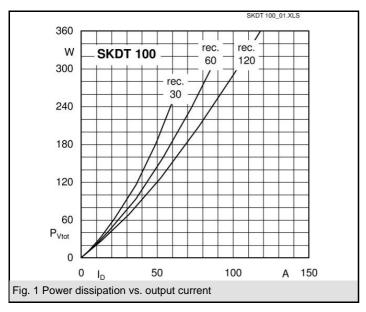
Controllable Bridge Rectifiers

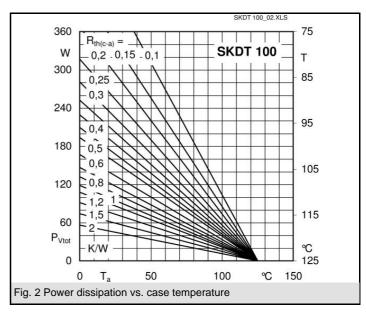
SKDT 100

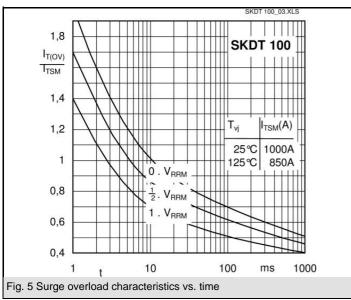
Features

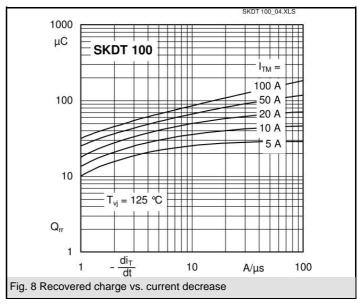

- Fully controlled three phase bridge rectifier
- Robust plastic case with screw terminals
- Large, isolated base plate
- Blocking voltage to 1400V
- High surge currents
- · Easy chassis mounting
- UL recognized, file no. E 63 532

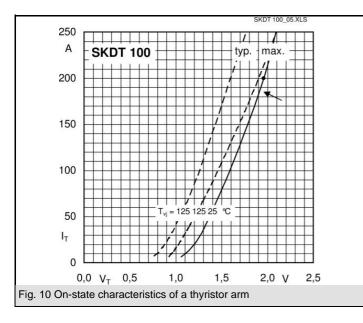
Typical Applications

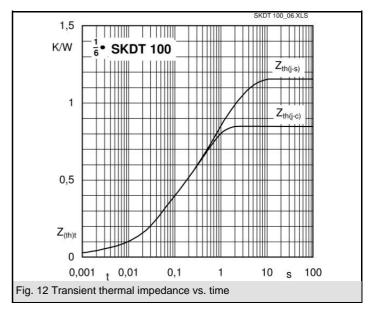

- For DC drives with a fixed direction of rotation
- Controlled field rectifiers for DC motors
- Controlled battery charger rectifiers
- 1) Painted metal shield of minimum 250 x 250 x 1 mm: $R_{th(c-a)}$ = 1,8 K/W

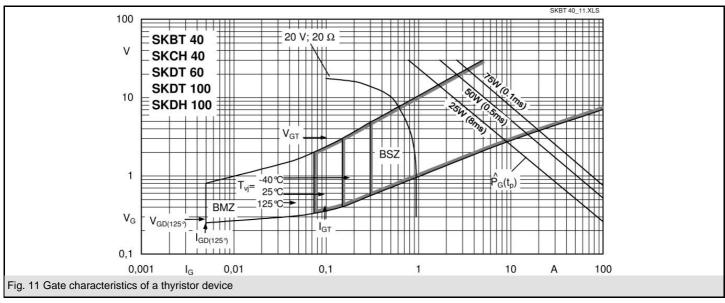

V _{RSM}	V_{RRM}, V_{DRM}	I _D = 100 A (full conduction)
V	V	(T _c = 84 °C)
900	800	SKDT 100/08
1300	1200	SKDT 100/12
1500	1400	SKDT 100/14
1700	1600	SKDT 100/16

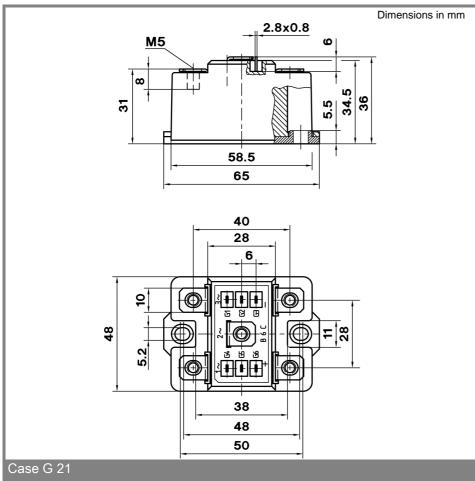

Symbol	Conditions	Values	Units
I _D	T _c = 85 °C	98	Α
	T _a = 45 °C; chassis ¹⁾	20	Α
	T _a = 45 °C; P13A/125	25	Α
	T _a = 45 °C; P1A/120	45	Α
I _{TSM} , I _{FSM}	T _{vj} = 25 °C; 10 ms	1000	Α
	T_{vj} = 125 °C; 10 ms	850	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$	5000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	3600	A²s
V _T	T _{vi} = 25 °C; I _T =200 A	max. 1,95	V
$V_{T(TO)}$	T _{vi} = 125 °C;	max. 1	V
r _T	T _{vj} = 125 °C	max. 4,5	$m\Omega$
$I_{DD}; I_{RD}$	T_{vj} = 125 °C; $V_{DD} = V_{DRM}$; $V_{RD} = V_{RRM}$	max. 15	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A}/\mu\text{s}$	1	μs
t _{gr}	$V_D = 0.67 \cdot V_{DRM}$	1	μs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 500	V/µs
(di/dt) _{cr}	T _{vi} = 125 °C; f = 50 Hz	max. 50	A/µs
t _q	T _{vi} = 125 °C; typ.	80	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	100 / 200	mA
I_L	$T_{vj} = 25 ^{\circ}\text{C}; R_{G} = 33 \Omega$	250 / 400	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vi} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	T_{vj}^{3} = 125 °C; d.c.	max. 0,25	V
I_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 5	mA
R _{th(j-c)}	per thyristor / diode	0,85	K/W
. 0 .,	total	0,141	K/W
$R_{\text{th(c-s)}}$	total	0,05	K/W
T _{vi}		- 40 + 125	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M _s	to heatsink	5	Nm
M _t	to terminals	3	Nm
m		165	g
Case	SKDT	G 21	1




SKDT 100







This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.